AQA Chemistry

Question number	Answer		Guidance
1 (a)	absorption X: (O–H) (alcohols)	1	Penalise acid or missing 'alcohol'.
	absorption Y : C=O	1	Allow carbonyl.
	$\begin{array}{cccccccc} H_{2}C-C-CH_{3} & H_{2}C-CH_{2}-C & H & H_{3}C-C-C-C & H_{3}C-C-C-C & H_{3}C-C-C-C & H_{3}C-C-C-C & H_{3}C-C-C-C & H_{3}C-C-C-C-C & H_{3}C-C-C-C-C & H_{3}C-C-C-C-C & H_{3}C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-$	3	Since the OH peak is an alcohol OH peak (which has a slightly higher wave number than an acid OH) you cannot have a carboxylic acid for the answer.
2 (a)	Functional group (isomerism)	1	
2 (b)	M1 Tollens' (reagent) (Credit ammoniacal silver nitrate OR a description of making Tollens') (Ignore either AgNO3 or [Ag(NH3)^{2+1}] or "the silver mirror test" on their own, but mark M2 and M3)M1 Fehling's (solution) or Benedict's solution (Ignore Cu^2+(aq) or CuSO4 on their own, but mark on to M2 and M3)M2 Red solid/precipitate (Credit orange or brown solid)M2 Red solid/precipitate (Credit orange or brown solid)M2 silver mirror OR black solid/precipitate (NOT silver precipitate)M3 (stays) blue or no change or no 	3	No reagent, CE=0 Allow the following alternatives M1 (acidified) potassium dichromate(VI) (solution) M2 (turns) green M3 (stays) orange / no change OR M1 (acidified) potassium manganate(VII) (solution) M2 (turns) colourless M3 (stays) purple / no change For M3 Ignore "nothing (happens)" Ignore "no observation"
2 (c)	(Both have) C=O OR a carbonyl (group)		
2 (d) (i)	(Free-) radical substitution ONLY		Penalise "(free) radical mechanism"
2 (d) (ii)	Initiation $Cl_2 \rightarrow 2Cl$ • First propagation Cl • + $CH_3CH_2CH_3 \rightarrow •CH_2CH_2CH_3 + HCl$		Penalise absence of dot once only. Penalise incorrect position of dot on propyl radical

AQA Chemistry

	OR C ₃ H ₈ Second propagation $Cl_2 + \bullet CH_2CH_2CH_3 \rightarrow CH_3CH_2CH_2CI +$ Termination (must make C6H14) $2 \bullet CH_2CH_2CH_3 \rightarrow C_6H_{14}$ or $CH_3CH_2CH_3$	CI• OR C ₃ H ₇ CI ₂ CH ₂ CH ₂ CH ₃		once only. Penalise $C_3H_7 \bullet$ once only Accept $CH_3CH_2CH_2 \bullet$ with the radical dot above / below / to the side of the last carbon. Use of the secondary free radical might gain 3 of the four marks
2 (e)	$Mr = \frac{44.063\#52}{Mr}$ (for propane) $Mr = \frac{43.989\#82}{Mr}$ (for carbon dioxide) M1 a correct value for <u>both</u> of these <u>Mr</u> M2 a statement or idea that <u>two peaks</u> spectrum) OR <u>two molecular ions</u> are s spectrum).	<u>values</u> . appear (in the mass een (in the mass	2	Mark independently
3 (a)	Pentan-2-one		1	ONLY but ignore absence of hyphens
3 (b)	Functional group (isomerism)		1	Both words needed
3 (c) (i)			1	Award credit provided it is obvious that the candidate is drawing the Z / <u>cis</u> <u>isomer</u> The group needs to be CHOHCH ₃ but do not penalise poor C-C bonds or absence of brackets around OH Trigonal planar structure not essential
3 (c) (ii)	Restricted <u>rotation</u> (about the C=C) OR No (free) <u>rotation</u> (about the C=C)		1	
3 (d)	M1 Tollens' (reagent) (Credit ammoniacal silver nitrate OR a description of making Tollens') (Do not credit Ag^+ , $AgNO_3$ or $[Ag(NH3)^{2+}]$ or "the silver mirror test" on their own, but mark M2 and M3)M1 Fehlir Be (Penalis CuSO_4 a	ng's (solution) / medict's se Cu ²⁺ (aq) or but mark M2 nd M3)	3	If M1 is blank CE = 0, for the clip Check the partial reagents listed and if M1 has a <u>totally incorrect</u> reagent, CE = 0 for the clip Allow the following alternatives M1 (acidified) potassium

AQA Chemistry

	M2 <u>silver mirror</u>	M2 Red solid/precipitate		dichromate(VI) (solution);
	OR <u>DIACK SOIID OF DIACK</u>	(Credit <u>orange</u> or <u>brown</u> solid)		formulae or incorrect
	M3 (stays) colourless	M3 (stavs) blue		oxidation state
	OR	OR		M2 (turns) green
	no (observed) change /	no (observed) change /		M3 (stays) orange / no
	no reaction	no reaction		(observed) change / no
				M1 (acidified) potassium
				manganate(VII) (solution);
				mark on from incomplete
				formulae or incorrect
				oxidation state
				M2 (turns) colourless
				M3 (stays) purple / no (observed) change / no
				reaction
				In all cases for M3
				Ignore "nothing (happens)"
				Ignore "no observation"
3 (e) (i)	Spectrum is for Isomer 1		1	The explanation marks in
0(0)(1)	or named or cor	rectly identified		3(e)(ii) depend on correctly
		,		identifying Isomer 1.
				The identification should
				candidates should not be
				penalised for an imperfect
				or incomplete name. They
				may say the alcohol of the "alkone" or the "E
				isomer"
3 (e) (ii)	If Isomer 1 is correctly ide	ntified, award <u>any two</u> from	2	If 3(e)(i) is incorrect or
	 (Strong / broad) abs 	sorption / peak in the range 3230		blank, CE=0
	to 3550#cm ⁻ or spe marked correctly or	ecified value in this range or		Allow the words "dip" OD
	and	opeoran		"spike" OR "trough" OR
	(characteristic abso	rption / peak for) OH group		"low transmittance" as
	Alcohol group	· · · · · · · · · · · · · · · · · · ·		alternatives for absorption.
		1		lanore reference to other
	 No absorption / pearse 	k in range <u>1680 to 1750</u> #cm or		absorptions e.g. C-H, C-O
	absence <u>marked cc</u>	meetiy on spectrum		
	(No absorption / pe	ak for a) C=O group / carbonyl		
	group / <u>carbon-oxy</u>	gen double bond		
		4		
	 Absorption / peak in the specified value in the 	the range 1620 to 1680 #cm ⁻¹ or		
	specified value <u>in tr</u> spectrum	is range or marked correctly on		
	and			

AQA Chemistry

(characteristic absorption / peak for) <u>C=C</u> group / <u>alkene</u> / <u>carbon-carbon double bond</u>	